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Portable Implementation of a Generic 
Exponential Function in Ada 

by 

Ping Tak Peter Tang 

Abstract 

By presenting a provably accurate implementation of the exponential function, we illus- 
trate that an accurate and portable elementary-function library can be implemented in 
Ada. 

1    Introduction 

Since July of 1986, the SIGAda Numerics Working Group has been working on a speci- 
fication for the elementary transcendental functions for Ada. The specification includes 
requirements on accuracies for the various functions. Our interest lies not only in for- 
mulating the specification, but also in demonstrating portable implementations that are 
reasonably accurate and efficient. One of the goals is to illustrate that the proposed 
specification is well formulated, by implementing an elementary-function library that is 
both portable and provably accurate to well within the requirements of the specification. 

This is a report on the exponential function that we implemented in conformance 
with the specification dated December 6, 1987. (Although the specification is still evolv- 
ing, we expect further changes to be minor.) The next two sections discuss two different 
problems related to the construction of portable generic libraries. Solutions to the prob- 
lems are also presented. These solutions will be applicable not only to the exponential 
function but also to the other functions. Sections 4 and 5 present the algorithm and the 
implementation details for the exponential function. Section 6 analyzes the implemen- 
tation and provides an error bound for the computed result. Section 7 presents some 
results obtained from a number of tests performed on the function. Finally, Section 8 
discusses further work to be pursued. The Appendix lists the complete source code. 



2    Generic Packages and Range Constraints 

2.1    Problem 

The proposed specification requires that the library of elementary functions be generic 
and provide an accuracy comparable to the base type of the generic actual type. What 
type, then, should be used inside the generic package for computations? The generic 
actual type is unsuitable because it may have a range constraint that can be violated 
during intermediate calculations in the package. This violation would then cause a 
constraint error to be raised even if the final result would have been perfectly acceptable, 
had the exception not occurred. 

It is clear that a constraint-free type with a precision comparable to that of the 
base type of the generic actual type must be used within the generic package body. Let 
W0RKING_FL0AT be such an ideal type, and let FLOAT-TYPE be the generic formal type. 
How can WORKING-FLOAT be declared? One may try declaring 

type WORKING-FLOAT is digits FLOAT-TYPE'BASE'DIGITS. 

Unfortunately, this does not work because FLOAT-TYPE'BASE'DIGITS is a nonstatic ex- 
pression. A workable solution, but impractical for portable implementations, would be 
to perform a case analysis as follows: 

case FLOAT-TYPE'BASE'DIGITS is 
when 1 => 

declare 

type WORKING-FLOAT is digits 1; 
begin 

— complete calculation of exp in this case 

— approximation accurate to at least i digit 
end; 

when 2 -> 
declare 

type WORKING-FLOAT is digits 2; 
begin 

— complete calculation of exp in this case 

— approximation accurate to at least 2 digits 
end; 

when SYSTEM.MAX_DIGITS => 
declare 

type WORKING-FLOAT is digits SYSTEM.MAX-DIGITS; 
begin 

— complete calculation of exp in this case 



— approximation accurate to at least 

— SYSTEM.MAX.DIGITS digits 

end; 

end case; 

For any portable implementation that intends to accommodate systems whose at- 
tribute SYSTEM.MAX_DIGITS is 15 or larger, the solution just proposed leads to a huge 
code. 

2.2    Solution 

As a practical solution, we condense the many cases as follows: 

case FLOAT.TYPE'BASE'DIGITS is 

when 1..6 => 

declare 
type WORKING.FLOAT is digits 
(6+SYSTEM.MAX.DIGITS - abs(6-SYSTEM.MAX.DIGITS))/2; 

— the expression above is MIN( 6, SYSTEM.MAX.DIGITS ) 

begin 
— complete calculation of exp in this case 

— approximation accurate to at least 6 digits 

end; 
when 7..IS => 

declare 
type WORKING.FLOAT is digits 
(15+SYSTEM.MAX_DIGITS - abs(15-SYSTEM.MAX_DIGITS))/2; 

begin 
— complete calculation of exp in this case 

— approximation accurate to at least 15 digits 

end; 

when 27..33 => 

declare 
type WORKING.FLOAT is digits 
(33+SYSTEM.MAX.DIGITS - abs(33-SYSTEM.MAX_DIGITS))/2; 

begin 
— complete calculation of exp in this case 
— approximation accurate to at least 33 digits 

end; 
when others => 
— cannot handle this case 

end case; 



This method guarantees that 

WORKING-FLOAT» DIGITS > FLOAT-TYPE'BASE'DIGITS (1) 

always. Furthermore, to avoid using a type that is unnecessarily more accurate, we note 
that equality for (1) holds whenever the right boundary of the case coincides with a 
predefined type of the machine on which the code runs. Thus, we have chosen the cases 
such that on the all the Ada systems that we have experience with, 

WORKING-FLOAT'DIGITS = FLOAT-TYPE'BASE'DIGITS (2) 

for all possible FLOAT-TYPEs. 

3    Accurate Implementation with Extra-Precise Arithmetic 

A typical implementation of an elementary function involves three steps: argument re- 
duction to a primary interval, approximation of the function on that primary interval, 
and reconstruction of the function value. In accurate implementations, it is standard 
practice to perform argument reduction and reconstruction in an extra-precise data type. 
When such a data type is unavailable, extra precision is simulated in software using the 
working-precise data type (cf. [3], [5]). Therefore, an elementary function package fol- 
lowing that practice would try to exploit extra-precise data types whenever they are 
available, and resort to simulation when they are not. 

In principle, a portable generic package is able to detect at elaboration time whether 
an extra-precise data type is available, and consequently can ensure that appropriate 
actions be taken when the function is invoked later. In practice, however, because of 
technicalities in constructing a portable generic package, such an approach will lead to 
a huge code jammed with several sets of (otherwise unnecessary) constants used for 
argument reduction and reconstruction and with many complicated branches. 

Fortunately, there are two practical alternatives to the impractical approach, one 
slightly more efficient while the other noticeably more accurate. We have chosen the 
latter. In what follows, we describe and compare the two methods, examine the cost of 
the method that we adopted, and explain how to switch from the adopted method to 
the other. 

3.1    Two Methods 

In Section 2.2, we described how we could declare the type WORKING-FLOAT that cor- 
responds to the same predefined floating type of the generic actual type. Thus, an 
acceptably accurate implementation can compute solely in WORKING-FLOAT and perform 
simulation of extra precision at critical places. There is an advantage as well as disad- 
vantages to this method. 



• Advantage: 

The cost is minimal. The implementation is no more expensive than an acceptably 
accurate implementation need be. The price of using simulation has to be paid 
even when the package is not required to be generic or portable. 

• Disadvantages: 

1. This method leads to a large body of code. The reason is that the three steps 
in the implementation — argument reduction, approximation, and reconstruc- 
tion — must be included in each of the different cases of W0RKING_FL0ATs (cf. 
Section 2.2). 

2. When extra precision is available without simulation, this method is less ac- 
curate than that of employing the readily available higher-precise arithmetic. 
The reason is that, because of the high cost, extra-precision simulation is 
done only in a few of the many places where higher precision would enhance 
accuracy noticeably. 

To overcome the disadvantages, we have taken an approach that uses unsimulated ex- 
tra precision whenever it is available. Because of portability and genericity, the only con- 
venient extra-precise type is LONGEST-FLOAT, the type with the maximum allowable num- 
ber of digits. Moreover, because we cannot determine a priori whether WORKING-FLOAT 
leaves us with any extra-precise type, the implementation must simulate extra-precision 
operations as well. Let us consider the advantages and disadvantages of this approach. 

• Advantages: 

1. The resulting code is compact. The reason is that the code for both argument 
reduction and reconstruction need appear only once. These two steps compute 
solely in LONGEST-FLOAT and work for all possible generic actual types. 

2. The accuracy is enhanced in general. When 

LONGEST-FLOAT»DIGITS > WORKING-FLOAT'DIGITS, 

the result obtained would be more accurate than that obtained from compu- 
tations done solely in WORKING-FLOAT, even with the help of extra-precision 
simulation. 

• Disadvantages: 

1. Work is duplicated in this approach. When 

LONGEST-FLOAT'DIGITS > WORKING-FLOAT'DIGITS, 

the simulation of extra precision is rendered redundant by the use of the type 
LONGEST-FLOAT. 



2. The approach may be unaffordably inefficient. It is conceivable that in some 
systems, operations in LONGEST-FLOAT are extremely inefficient. For example, 
it is possible that operations on the H-format (113 significant bits) data types 
supported by the VMS operating systems may be implemented in software on 
some particular machines. 

We have chosen the second approach because of the higher accuracy it offers and the 
compact code that results from it. Section 3.2 below shows that the disadvantages 
discussed above are insignificant in most cases; and Section 3.3 discusses how the first 
approach can be implemented by slight modification of our code (given in the Appendix). 

3.2 Cost 

How often is work being duplicated in our approach? On systems with only two pre- 
defined floating types, duplication occurs only half of the time. In those undesirable 
cases, the cost of the unnecessary effort is only approximately five multiplications in 
LONGEST-FLOAT. Moreover, operations in LONGEST-FLOAT are efficient whenever they are 
implemented in hardware. Consequently, on machines with only two predefined floating 
types, both supported in hardware, our implementation is justified. This applies to all 
but two Ada systems that we know of. 

3.3 Alternative 

On systems such as the IBM/370 or VAX under VMS, there are usually three predefined 
floating types. If calculations in the widest format are excessively expensive, imple- 
mentors can easily incorporate the argument reduction and the reconstruction into the 
approximation step of the code (cf. the Appendix). By doing so, all calculations will be 
performed in the base type of the generic actual type. 

4    Algorithm 

The algorithm follows. Implementation details are given in the next section. 

Step 1. Filter out the exceptional cases. When the magnitude of the input argument 
X is so large that an accurate result cannot be represented in the underlying data 
type, the exception ARGUMENT-ERROR should be raised. There are other situations 
in which that exception should be raised, and they are stated precisely in the 
specification. 

Step 2. Reduce the input argument X to [-log2/64,log2/64]. Obtain integers n, m, 
and j and machine numbers R^ and R2 such that (up to roundoff) 

X = «log 2/32 + (R1+R2), 



|Äi + -R2| < log 2/64. Furthermore, 

n = Z2-m + j,    j = 0,1,...,31. 

Because of rounding errors, |Äi + JR2| may exceed log 2/64 by a few units of its last 
place, and the calculated value of n may also differ by 1 from the integer closest to 
32.X"/log2. The analysis later on will show that implementation is still accurate 
despite these rounding errors. 

Step 3. Approximate exp(Äi + £2) - 1 by a polynomial p(Ri + R2), where 

p(t) = t + axt
2 + a2t

3 + ■•- + ant
n+l. 

Step 4. Reconstruct exp(X) by 

exp(X) = 2m(2J'/32 + 2j'32p(Ri + R2)). 

5    Implementation Details 

5.1    Assumptions about Floating-Point Arithmetic 

Ada demands that certain behavior of the underlying floating-point arithmetic be sat- 
isfied when the operands involved are safe numbers. For example, for safe numbers A 
and B, A — B, in the absence of underflow, has to be exact whenever cancellation occurs. 
The reason is that, because of cancellation, the difference is a safe number. The same 
inference, however, cannot be made if the numbers A and B are merely machine numbers. 

In practice, implementations must be able to handle machine-number input and, 
ideally, provide an accuracy with respect to the machine precision that is in general 
higher than that of the safe numbers. Consequently, our implementation needs to make 
certain assumptions about the floating-point data types of the target machines. These 
assumptions are related to the exponent width, the arithmetic, and the radix. 

The assumptions are as follows: 

• Exponent Width: We assume that the number of bits in the exponent field never 
exceeds L/3, where L is the actual number of binary bits in the mantissa of the 
machine. Otherwise, the accuracy of the final result would degrade as the mag- 
nitude of the input argument becomes large. This assumption is built into the 
number of bits of the value log 2/32 we have stored in the program. 

• Arithmetic:   Let A and B be two machine numbers such that 

2B > A > B. 

Thus, cancellation occurs in A — B. 



On binary machines, we assume that the subtraction is exact whenever B has one 
(or more) trailing zero bit(s). 

On nonbinary machines, we assume that A - B is exact. This assumption requires 
in particular that a guard digit be present in the subtraction hardware. 

If this assumption on arithmetic is violated, our scheme for argument reduction 
may fail to be accurate. 

• Radix: We assume that the radix is either 2 (binary) or 16 (hexadecimal). We made 
this assumption because on most binary and hexadecimal floating-point arithmetic 
that we know of, the previous assumption about arithmetic is satisfied. 

All the Ada systems with which we have experience satisfy our assumptions.  The 
following tabulates those machines1 (cf. [2]). 

System 
Data 
Type Radix 'digits 

Mantissa 
Length (in bits) 

Exponent 
Width (in bits) 

IBM/ single 16 6 24 7 
370 double 16 15 48 7 

quad 16 20 96 7 
CRAY-1 single 2 13 48 14 

double 2 27 98 14 
single 2 6 24 8 

VAX/ d-format 2 9 56 8 
VMS g-format 2 15 53 11 

h-format 2 33 113 15 
IEEE/ single 2 6 24 8 

754 double 2 15      | 53 11 

5.2    Implementation 

The following notes correspond to the algorithm in the previous section. All computa- 
tions are carried out in the order prescribed by the parentheses. In the following discus- 
sions, X is the input argument, FLOAT-TYPE is the generic formal type, and LONGEST-FLOAT 
is the type declared as digits SYSTEM.MAX_DIGITS. 

Step 1. The exceptional cases are as follows: 

• Raise ARGUMENT-ERROR if |X| > LARGE-THRESHOLD, where 

LARGE-THRESHOLD := 2 * FLOAT-TYPE' SAFE-EMAX * log 2. 

^he «digits attributes for IBM/370 quad precision and VAX d-formats are shorter than the mantissa 
can offer because the exponent ranges of those data types are limited. 



Note that for |X| > LARGE-THRESHOLD, 

ex > 2 • FLOAT-TYPE»SAFE-LARGE, 

or 
eX <-■ FLOAT-TYPE*SAFE-SMALL. - 2 

Thus, some arguments that are not filtered out here may still warrant an 
exception. The computations in the next three steps will be able to handle 
those situations (cf. exceptional handling in the code). 

• Return 1.0 + X if |X| < SMALL-THRESHOLD, where 

SMALL-THRESHOLD := FLOAT-TYPE'BASE'EPSILON. 

Step 2. Let Y := LONGEST-FLOAT(X) be the input argument converted to LONGEST-FLOAT. 
To perform the argument reduction accurately, do the following. 

• First, calculate N, Hi, and N2 as follows: 
N := LONGEST-INTEGER(Y * INV-L); 
-- see explanation below on LONGEST-INTEGER 
if |N| > 28 then 

N2 := N mod 26; 
«N2=0,l,...,26-1 
Ni := N - N2; 

otherwise, 
N2 := 0; 
Ni := N. 

INV-L is the value 32/log 2 represented in LONGEST-FLOAT. The declaration 

type LONGEST-INTEGER is range 
SYSTEM.MIN.INT..SYSTEM.MAX.INT; 

is meant to provide an integer type that would accommodate all the possible 
round-to-integer values of Y * INV_L. A better way, however, is to use the 
proposed primitive function ([6]) REAL-INT that returns in floating type the 
integral value closest to a given real number. 

• The reduced argument is represented in two LONGEST-FLOAT variables Ri and 
R2. The idea is to represent log 2/32 to extra precision by two LONGEST-FLOAT 
numbers Li and L2. The values of Li and L2 are chosen at run time in such a 
way that Li + L2 represents log 2/32 to a sufficient number of bits more than 
the mantissa length of LONGEST-FLOAT. After Li and L2 are chosen, compute 
Ri and R2 as follows: 

TMP :=Ni *Li; 
if |Y| > |TMP| then 



1 

Rl := Y - TMP; 
otherwise, 

Rl := (Y - TMP/2) - TMP/2; 
IfN2 ^0, Ri :=Ri -N2*Li; 
R2 := -N*L2. 

• Finally, calculate M and J by 

J := N mod 32;    M := (N - J)/32. 

Step 3. Let WORKING-FLOAT be the type described in Section 2.   The approximation 
polynomial is computed by a standard recurrence in WORKING-FLOAT as follows: 

:=   W0RKING_FL0AT(Ri+R2); 

:=   R * R * (Ai + R * (A2 + R * (... + R * An)...)); 

:=   Rl + (R2 + LONGEST-FLOAT(POLY)). 

The coefficients are obtained from a Remez algorithm. 

R 

POLY 

Q 

Step 4. Each of the values 2J'/32, j = 0,1,... ,31, is calculated beforehand and repre- 
sented by two LONGEST-FLOAT numbers 

TW0_T0_J-BY_32(J,LEAD)    and    TW0_T0_J_BY_32(J, TRAIL). 

The leading part has thirteen significant bits, and the trailing part has full preci- 
sion. Thus the sum of the two represents 2J'/32 to roughly thirteen more bits than 
LONGEST-FLOAT has in its mantissa. The reconstruction is as follows: 

F 

Ql 

Q2 

EXP 

EXP 

TW0_T0_J_BY_32(J,LEAD) + TW0_T0_J_BY_32(J, TRAIL) 

TW0_T0_J_BY_32( J, LEAD) 

TW0_T0.J_BY_32(J, TRAIL) + F * Q 

2™ * (qi + Q2)   for binary machines 
N N 

2   * Qi + 2  * Q2    for hexadecimal machines 

6    Error Analysis with Ada's Model 

The proposed specification for the exponential function EXP requires that 

EXP(X) - ex 

< 4 * FLOAT-TYPE'BASE'EPSILON 

for most input values X. The analysis to follow will show that with moderate assump- 
tions about the underlying floating-point arithmetic, the accuracy requirement is easily 

10 



achieved by our algorithm implemented as described. Since most systems perform arith- 
metic more accurately than prescribed by Ada's model, our analysis will inevitably be 
pessimistic. In Section 6.6, we will discuss accuracy in terms of machine precision. 

Our goal in the analysis is to estimate, in terms of 

FLOAT-TYPE' BASE 'EPSILON, 

the final error in the implemented function. It is obvious that our implementation is 
least accurate when 

FLOAT-TYPE'BASE'EPSILON = LONGEST-FLOAT'EPSILON. 

Thus, we will analyze this case only. Throughout the analysis, we will use e and radix to 
denote 'EPSILON and 'MACHINE-RADIX of LONGEST-FLOAT, respectively, and "exponent 
width" to denote the number of binary bits in the exponent field of its predefined floating 
type. We find the following notation useful in error analysis: 

• Typefaced letters, X, Y, P, Q, etc., denote real numbers that are representable 
exactly in the machine. 

• Angle brackets (• • •) denote the value of a real number "• • •" rounded to machine 
precision. Thus, executing the statement 

A:=B*C 

in machine precision gives the value 

A = (B-C). 

• e denotes the value FLOAT-TYPE' BASE' EPSILON. 

• Let ibea real number. We define £(x) to be the difference between the value of 
x when rounded to working precision and x itself, thus: 

£(*) := (x) ~ x- 

• If one uses (•) and £(•), the relationship 

(A op B) = A op B + f (A op B) 

holds for any machine-precision values A and B and for each of the four basic 
operations +, —, •, and /. 

11 



Given safe numbers A and B, and op in {+,-,-,/}, let k be the unique integer such 
that 

2*<|AopB|<2fc+1. 

Then, with the notation just introduced, the Ada model guarantees that 

|f (A op B)|<2fce. 

We are now ready to perform the analysis. 

6.1 Classification of Errors 

We can classify the errors in our algorithm into three categories: 

• Error in reduction. The computed reduced argument Rj + R2 differs from the cor- 
rect one r defined by the equation 

x = (32m + j) log 2/32 + r. 

• Error in approximation. The approximating polynomial or rational function p(r) 
differs from exp(r) — 1. 

• Rounding errors.    Errors will be committed as we compute p{r) and the final 
reconstruction; such is the nature of finite-precision arithmetic on computers. 

Our analysis treats each of the three categories of error independently before com- 
bining them. 

6.2 Error in Reduction 

Let Ri,R2,N,Ni,N2,M, and J be the values as obtained in step 2 of the implementation. 
We estimate the difference between the value Ri + R2 and the correct reduced argument 
r, where 

r = Y-N- log 2/32. 

Several observations: 

• Li,L2 are so chosen (see the source code for details) that 

|Li + L2 - log2/32| < 2"10 • 2-
exP°nent wi<lth . e    and 

|L2| < 2~9 . 2-exPonent width 

• Both NiLi and N2Li are safe numbers with at least one trailing zero. This is 
because Li is a safe number with at least nine trailing zeros and both Nj and N2 

never exceed eight bits by design. 

12 



• Consider the calculation of Ri: 
TMP:=Ni*Li; 
if |Y| > |TMP| then 

Rl := Y - TMP; 
otherwise, 

Ri := (Y - TMP/2) - TMP/2; 
ifN2^0, Ri :=Ri-N2*Li. 

The crucial observation is that the calculations above are error free when performed 
on any hexadecimal machine with a guard digit for subtraction, and on any binary 
machines with or without a guard bit for subtraction. The reason is that both 
NiLi and N2Li have at least one trailing zero bit, and cancellation occurs in each 
of the subtractions above. 

Using these observations, we can estimate the error in reduction as follows: 

Now, because 

therefore 

Consequently, 

R1+R2    =   Y-(H.Li + <H-L2» 

=   Y-N(L1+L2) + e(N-L2). 

|N|    < |Y-32/log2| 

< |LARGE_THRESH0LD-32/log2| 

< |64 • 2exP°nent width-i. iog2(radix)| 

< log2(radix).2exP°nentwidth+5, 

|N-L2| <2 -6 and        |f(N-L2)| < 2"7e. 

|(Rl + R2) - (Y - N -log2/32)|    <   N • |Li + L2 -log2/32| + |£(N • L2)| 

< 2-7eH 
< 2~6e. 

<    2_7e + 2_76 

6.3    Error in Approximation 

We estimate the difference between the transcendental function e* - 1 and the approxi- 
mating polynomial 

p(t) = t + kit2 + ■■■ + knt
n+1 

for t £ [-log2/64,log2/64].   The estimation is done by locating numerically all the 
extreme points of e' - 1 - p{t) in the interval [-0.010831,0.010831] (slightly wider than 
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[- log 2/64,log 2/64]). In our code, five different polynomials are used for different ranges 
of FLOAT-TYPE'DIGITS. In each of those ranges, we find that 

|e'-l-p(*)|<2-6€ 

for all t e [-0.010831,0.010831], where e corresponds to the maximum number of digits 
in that particular range. 

6.4    Rounding Errors 

Here we are concerned with the difference between the value EXP obtained by executing 

R 

POLY 

Q 

F 

Qi 

Q2 

EXP 

EXP 

=    R1+R2 

R * R * (At + R * (A2 + R * (... + R * An)...)) 

:=    Ri + (R2 + LONGEST-FLOAT(POLY)) 

:=    TW0_T0_J_BY_32( J, LEAD) + TW0_T0_J_BY_32( J, TRAIL) 

=   TW0.T0_J_BY_32(J,LEAD) 

=    TW0.T0_J_BY_32(J,TRAIL) + F*Q 

:=   2^ * (Qi + Q2)   for binary machines 

2" * Qi + 2" * Q2    for hexadecimal machines 

and the value we would have obtained had all the preceding calculations been error free. 
Three observations simplify our analysis. First, on binary machines, the execution of 

2M*(Qi + Q2) 

and 

2" * Qi + 2" * Q2 

yields identical results.  Second, the magnitude of POLY is at most |(log2/64)2, which 
is less that 2-13.  Thus the rounding errors accumulated in POLY are practically zero. 
Third, 2* * Qj is exact because Qj is a safe number. 

To shorten the exposition that follows, we use Si and S2 to denote 

TW0_T0_J_BY_32(J,LEAD)    and    TW0_T0_J_BY_32(J, TRAIL), 

respectively. We axe now ready to begin. 

Using the observations and the notation, we are going to estimate the difference 
between 

(2" • Qi + (2" • (S2 + «Si + S2) • (Rj + (R2 + POLY)))))) 

and 

2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))). 

To obtain a good estimate, we must give a careful account for each deviation of our 
computed value from the ideal one. We use E0 to denote the ideal result. Ex denotes 
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the first corrupted result, E2 the second, and so on. E7 is the final computed result, and 
the rounding error is simply the difference EQ — E7. 

E0 

Ei 

E2 

E3 

E4 

E5 

E6 

E7 

= 2* • Qi + (2* • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))) 

= 2M • Qi + 2" • (S2 + (S! + S2) • (Ri + (R2 + POLY))) 

= 2" • Qi + 2M • (S2 + (Si + S2) • (Ri + (R2 + POLY))) 

= 2" • Qi + 2M • (S2 + (Si + S2) • (Ri + (R2 + POLY))) 

= 2" • Qi + 2" • (S2 + ((Si + S2) • (Rt + (R2 + POLY)))) 

= 211 • Qi + 2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))) 

= 2" • qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))) 

= (2M • Qi + (2* • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))))) 

We also name the following values by J\, F2,..., F7 because these values arise often 
in what follows. 

Fi 

F2 

F3 

FA 

F5 

F6 

F7 

= R2 + POLY 

= Ri + (R2 + P0LY) 

= Si+S2 

= (Si + S2) • (Ri + (R2 + POLY)) 

= S2 + ((Si + S2) • (Ri + (R2 + POLY))) 

= 2M • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))) 

= 2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + POLY))))) 

Now the estimates: 

and 

|rounding errors| = |JE70 — E7\ < ]jP |-E;-i — Ei\, 
t'=i 

|£0-£i|    =    2vw|Si+S2|-|(R2+P0LY)-(R2 + P0LY)| 

=   2M\F3\.\t(F1)\, 

\E1-E2\   =   2M\F3\-\£(F2)\, 

\E2-E3\   =   2M\(F2)\-\Z(F3)\, 

\E3-E4\   =   2M|£(F4)|, 

\E4-E5\ 

\E5 - E6\ 

\E6 - E7\ 

2M\ttFs% 
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To get an estimate of \{(Fj)\ for j = 1,..., 7, we need know only the rightmost binary 
intervals in which the various |Fj|'s may lie. Note that each of the F/s is the computed 
result of some value whose range is known. Consequently, unless the largest magnitude 
achieved by those values lies very close to a power of 2, the rightmost binary intervals 
in which those values may lie are the binary intervals we seek. We tabulate the results 
below. 

Value 

IN 
\p(r)\ 

|2i/32| 

\y/32p(r)\ 

\S2 + 2^2p(r)\ 

2M|S2 + 2^32p(r)\ 

|2M2i/32er| 

Thus, when j = 0, 

|rounding error |    < 
< 

When j = l, 

|rounding error |    < 
< 

Note also that 

and 

Range 

[0,2-m78] 
[0,2-6-52] 
[0,231/32] 

2J'/32[0,2-6-52] 

2>'/32[0,2-6-49] 

2M2J/32[0) 2-6.49] 

2M2J/32r2-l/64 21/64] 

Conclusion Drawn 

l£(*i)| < 2-»£ 
M{Fi)\ < 2"76, \F2\ < 2"6-5 

\{(F3)\ = 0 for j = 0; 
l£(-^3)| < c otherwise. 

I W)| < 2"7€ for j = 0; 
\£(F4)\ < 2~6€ otherwise. 

\t(F5)\ < 2~7€ for j = 0; 
l£(*5)| < 2~6€ otherwise. 

\t(Fa)\ <2M2~7e for j = 0; 
\t(F6)\ < 2M2"6e otherwise. 

\t(F7)\ < 2M~1e for 2'V3V < 1; 
\£(F7)\ < 2Me otherwise. 

\t(Fr)\ + 2M~l ■ e • (2-10 + 2"6 + 0 + 2"6 + 2"6 + 2"6), 
\£(F7)\ + 2M~1 ■ e ■ 0.06348. 

|£(F7)| + 2M • e • (2-10 + 2~6 + 2"65 + 2"6 + 2"6 + 2~6), 
|e(F7)| + 2M ■ e • 0.07453. 

eY = 2M-2J'/32.er, 

|e(i?V)|/(2M.2^32.e'-) < e. 

6.5    Overall Error 

Finally, we estimate the overall relative error 

|eY - (2" • Qi + (2* . (S2 + ((Sl + S2> • (Rl + <R2 + P0LY»»»| / e^ 

From the previous analysis, 
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I absolute error | 
=   |2M2''/3V - <2M • Q! + (2M • (S2 + ((Si + S2) • (Ri + (R2 + POLY)))))) 

< 2M2J'/32 • \er - eRi+R21 + 2M2J'/32 • |eRl+R2 - 1 - p(Ri + R2)| 
+ |2M2J'/32p(Ri + R2) + 2M2J'/32 

-(2" • Qi + (2" • (S2 + ((Si + S2) • (Ri + (R2 + P0LY))))))| 

< 2M2^32 (l.01|r - (Ri + R2)| + |eRi+R2 - 1 - pfa + R2)|) 
+ |2M2^32KRl+R2) + 2M2J'/32 

-(2" • Qi + (2" • (S2 + ((S! + S2) • (Ri + (R2 + P0LY))))))| 
< 2M2J/32 (1.01|error in reduction| + |error in approximation!) 

+ | rounding error | 
< 2M2J/32(1.01 • 2~6 + 2~6)c + |rounding error|. 

When j = 0, eY > 2M_1 and 

|relative error| 
< 2 (1.01 • 2~6 + 2~6) e + 0.06348c + (|f (F7)| / eY) 

< 1.13e. 

When j > 1, e1 > 2M and 

| relative error | 
< 231/32 (1.01 • 2"6 + 2"6) c + 0.07453e + (\Z(F7)\ / e

Y) 

< 1.14c. 

Thus, the relative error of the implementation stays well within the required threshold 
of4e. 

6.6    Remarks 

On all Ada systems that we have experience with, the implementation is actually capable 
of delivering comparable accuracy with respect to the precision offered by the underlying 
hardware. Moreover, on machines such as the VAX or those with floating-point arith- 
metic conforming to ANSI/IEEE Standard 754-1985, the previous analysis is pessimistic. 
In particular, a similar implementation that is tailored specifically to IEEE 754 arith- 
metic has been proved accurate to within 0.54 unit of last place. In a later paper, we 
will analyze in detail the accuracy of our implementation on the various machines we 
are interested in. 

7    Test Results 

The code as listed in the Appendix has been run on a Sequent VADS compiler version 
5.41.6, an IBM PC/AT using the Meridian AdaVantage compiler version 2.0, and a VAX 
8650 using DEC Ada version 1.4. 
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We have also tested the implementation on the Sequent and the IBM PC/AT using 
the ELEFUNT test transcribed into Ada by K. W. Dritz. 

On the Sequent, there are two predefined floating-point types with 24 and 53 signifi- 
cant bits, 'digits 6 and 15, respectively. Thus the accuracies offered by the two sets of 
safe numbers are 21 and 51 bits, respectively; and those offered by the two machine for- 
mats are 24 and 53 bits, respectively. The ELEFUNT results are summarized as follows. 
(For a description of the test, see [3].) 

Generic Accuracy Reported Loss of Binary Bits 
Actual Type with respect to Max. Relative Error Root Mean Square 
'digits   6 21 bits 0.00 0.00 
'digits   6 24 bits 0.99 0.00 
'digits 15 51 bits 0.00 0.00 
'digits 15 53 bits 0.99 0.00 

On the IBM PC/AT with the Meridian AdaVantage, there is only one predefined 
floating-point type with 53 significant bits, 'digits 15. Thus, the accuracies offered 
by the safe numbers and the machine format are 51 bits and 53 bits, respectively. The 
results are summarized as follows. 

Generic 
Actual Type 
'digits 15 
'digits 15 

Accuracy 
with respect to 

51 bits 
53 bits 

Reported Loss of Binary Bits 
Max. Relative Error 

0.00 
1.00 

Root Mean Square 
0.00 
0.00 

8    Conclusion and Future Work 

We have shown that the environmental inquiries and other numerical features provided 
by Ada make portability and provability of some numerical software possible. With 
conscientious effort, a reasonably portable and accurate exponential function can be 
implemented. 

Our experience with the sample implementation presented here strongly suggests 
that the following four projects are within reach. We are committed to the first two, and 
we hope that circumstances will allow us to pursue the others. 

• Specification of Elementary Functions: The sample implementation has pro- 
vided us with valuable guidelines on proposing a specification for the elementary 
function library. We will continue to participate in the formulation of the specifi- 
cation. 

• Library of Elementary Functions: A portable complete library of the twenty 
elementary functions ([7] and [6]) can be implemented by using strategies similar 
to those employed here. The only technical challenge we foresee now is an accurate 
reduction routine that finds the remainder of a machine number with respect to 
the transcendental number w. 
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• Library of Primitive Functions: We intend to construct a library of primitive 
functions similar to those proposed in [6]. Since the functions here are of a much 
lower level, a portable implementation may not be practical or even possible in 
some cases. Some of the elementary functions may be constructed on top of this 
basic library. (Our exponential function, though not dependent on this library, will 
benefit from it.) 

• Validation: From our experience so far, a portable test suite seems to be im- 
plementable. The test suite we have in mind consists of two parts. The first part 
basically will be a transcription of the ELEFUNT test in [3]. The ELEFUNT test 
is adept in reporting possible mistakes and in estimating the accuracy of the func- 
tion under test. The second part of the test will try to report the exact deviation of 
the function under test from the correct value. In the past, such a task has usually 
been performed only if higher-precision function values are available. With the 
numerical features of Ada — for example, accurate conversion of universal reals to 
model numbers, and table-driven techniques like those employed in our exponential 
function — we believe such a task can be accomplished portably even without an 
extra-precise function. 

A test suite as such should also be useful in validating libraries that claim confor- 
mance to the proposed specification. 
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Appendix 

The following is the complete source program for the exponential program, 

package MATHEMATICAL_EXCEPTIONS is 

ARGUMENT_ERROR : exception; 

end MATHEMATICAL_EXCEPTIOHS; 

with MATHEMATICAL_EXCEPTIONS; 

generic 

type FLOAT_TYPE is digits <>; 

package GENERIC_ELEMENTARY_FUNCTIONS is 

function EXP( X : FLOATJTYPE ) return FLOATJTYPE; 

— other functions to be added later 

ARGUMENT_ERROR : exception renames MATHEMATICAL_EXCEPTIONS.ARGUMENT_ERROR; 

end GENERIC_ELEMENTARY_FUHCTIONS; 

with SYSTEM; 

with TEXT_IO;      use TEXT_IO; 

package body GENERIC_ELEMEHTARY_FUNCTIOHS is 

As of 2/4/88, this package contains only the exponential 
function. More functions will be added later. 

~ FLOAT_TYPE is the floating-point type with which the user 

~ instantiates this package. Computation in this type is 

~ avoided to insulate ourselves from any possible range 
constraints imported with the type. 

~ Two floating-point types are defined in this package body: 

~ LONGEST_FLOAT is the floating-point type having 'DIGITS equal to 
— SYSTEM.MAXJDIGITS. This type is needed here to perform 

— argument reductions and final reconstructions of elementary 
-- function values in the maximum precision available. 
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— WORKIHG_FLOAT is the floating-point type in which the approximations 

— for elementary functions are carried out. This type is so defined 

— that 
WORKING_FLOAT'DIGITS = FLOAT_TYPE'BASE'DIGITS 

— on all the Ada systems we have experience with. 

— However, there may be some (unknown to us) systems for which 

WORKINGJFLOAT'DIGITS > FLOATJTYPE'BASE'DIGITS 

— Thus, type WORKING.FLOAT has at least the precision of the base 
— type of FLOATJTYPE, and usually it does not have excess precision. 

— Assumptions: 

— This package body is portable to a particular implementation only 

— if the following assumptions are valid in that implementation: 

— (1)   6 <= SYSTEM.MAX_DIGITS <= 33 
— (2)   The following assumptions are made on floating-point 

arithmetic: 

(a) Radix: The radix will be either 2 or 16. 
(b) Exponent Width: We assume that the number of bits in 

the exponent field of the floating-point format never 

exceeds L/3, where L is the actual number of bits 

in the mantissa of the machine. 
(c) Arithmetic: Let A and B be two machine numbers 

such that 2B >= A >= B. Then, cancellation occurs in 
A - B. On binary machines, we assume that the 
subtraction is exact whenever B has one (or more) 
trailing zero bit(s). On nonbinary machines, we 
assume that A - B is exact. This assumption requires 
in particular that a guard digit be present in the 

subtraction hardware for the nonbinary machines. 

— If the assumptions (i) and (2a) are invalid, the predefined 
— exception PROGRAM_ERROR will be raised. 
— Some compilers could detect at compile time that it 
— must always be raised at run time, thus calling attention to the 

— violation of the assumptions at compile time. 

type   LONGEST_FLOAT is digits SYSTEM.MAX.DIGITS; 
type   LONGEST_INTEGER is range SYSTEM.MIN_INT..SYSTEM.MAX_INT; 

type   POSITION    is (LEAD, TRAIL); 
subtype INDEX is LONGEST_INTEGER range 0..31; 

— The following tables of constants are needed by several of the elementary 
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functions. 

-- TW0_T0_J_BY_32 is an array of 32 pairs of LONGEST_FLOAT numbers 

— representing 2**(j/32) for j = 0, 1, 2, ..., 31. Each such value 

-- is represented by LEAD + TRAIL. The leading parts contain 13 bits 

— of information and are consequently model numbers as long as 

~ SYSTEM.MAX_DIGITS is >= 4. The trailing parts contain roughly 

— L0NGESTJFL0AT'MANTISSA bits of information, under the assumption 

— that SYSTEM.MAX_DIGITS is <= 35. So, when the assumptions are met, 
~ LEAD + TRAIL represents 2**(j/32) to roughly 13 extra bits. 

TV0_T0 

0 => 
1 => 

2 => 
3 => 

4 => 

5 => 

6 => 

7 => 
8 => 

9 => 

10 => 

11 => 

12 => 
13 => 
14 => 
15 => 
16 => 
17 => 
18 => 
19 => 
20 => 

21 => 
22 => 

23 => 
24 => 
25 => 

26 => 

27 => 
28 => 
29 => 
30 => 
31 => 

J_BY_32 
(LEAD 

(LEAD 

(LEAD 
(LEAD =: 

(LEAD = 

(LEAD = 

(LEAD = 

(LEAD = 

(LEAD 

(LEAD = 

(LEAD 

(LEAD = 
(LEAD = 
(LEAD 
(LEAD 
(LEAD 
(LEAD 
(LEAD 
(LEAD 
(LEAD 

(LEAD 
(LEAD 

(LEAD 
(LEAD 
(LEAD 

(LEAD 

(LEAD 

(LEAD 

(LEAD 
(LEAD 
(LEAD 
(LEAD 

constant 

•>16#1.000#, 
•>16#1.059#, 

>16#1.0B5#, 
»16#1.113#, 

>16#1.172#, 

>16#1.1D4#, 

=>16#1.238#, 

>16#1.29E#, 

>16#1.306#, 

>16#1.371#, 

>16#1.3DE#, 

>16#1.44E#, 

<>16#i.4BF#, 
=>16#1.534#, 
=>16#1.5AB#, 
=>16#1.624#, 
=>16#1.6A0#, 
=>16#1.71F#, 
=>16#1.7A1#, 
=>16#1.825#, 
=>16#1.8AC#, 

=>16#1.937#, 

=>16#1.9C4#, 
=>16#1.A55#, 
=>16#1.AE8#, 

=>16#1.B7F#, 

=>16#1.C19#, 

=>16#1.CB7#, 
=>16#1.D58#, 
=>16#1.DFC#, 
=>16#1.EA4#, 
:>16#1.F50#, 

array( 

TRAIL 
TRAIL 

TRAIL 
TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 
TRAIL 
TRAIL 
TRAIL 
TRAIL 
TRAIL 
TRAIL 
TRAIL 

TRAIL 
TRAIL 

TRAIL 

TRAIL 
TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 
TRAIL 
TRAIL 
TRAIL 

INDEX 

=>16#0 

=>16#0 
=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 
=>16#0 

=>16#0 

=>16#0 

=>16#0 
=>16#0 

=>16#0 

=>16#0 

=>16#0 

=>16#0 
=>16#0 
=>16#0 
=>16#0 

, POSITION ) of L0NGEST_FL0AT := ( 

.000000000000000000000000000000000#) 

.000B0D31585743AE7C548EB68CA417FE5#) 

.000586CF9890F6298B92B71842A983642#) 

.00001D0125B50A4EBBF1AED9318CEAC5C#) 

.000B83C7D517ADCDF7C8C50EB14A79203#) 

.000873168B9AA7805B8028990F07A98B4#) 

.0007A6E75623866C1FADB1C15CB593B03#) 

.0009DF51FDEE12C25D15F5A24AA3BCA88#) 

.000FE0A31B7152DE8D5A46305C85EDECB#) 

.000A7373AA9CAA7145502F4547987E3E1#) 

.000A64C12342235B41223E13D773FBA2C#) 

.000086061892D03136F409DF019FBD4F3#) 

.000DAD5362A271D4397AFEC42E20E0363#) 

.0002B569D4F81DF0A83C49D86A63F4E67#) 

.00007DD48542958C93015191EB345D88D#) 

.0007EB03A5584B1F0FA06FD2DA42BB1CE#) 

.0009E667F3BCC908B2FB1366EA957D3E3#) 

.O0075E8EC5F73DD2370F2EF0ACD6CB434#) 

.0001473EB0186D7D51023F6CDA1F5EF42#) 

.00089994CCE128ACF88AFAB34A010F6AD#) 

.000E5422AA0DB5BA7C55A192C9BB3E6ED#) 

.00037B0CDC5E4F4501C3F2540A22D2FC4#) 

.0009182A3F0901C7C46B071F2BE58DDAD#) 

.00003B23E255C8B424491CAF87BC8050A#) 

.0009F995AD3AD5E8734D1773205A7FBC3#) 

.00076F2FB5E46EAA7B081AB53C5354C88#) 

.0009BDD85529C2220CB12A091BA667944#) 

.00020DCEF90691503CBD1E949DB761D95#) 

.00018DCFBA48725DA05AEB66E0DCA9F58#) 

.00097337B9B5EB968CAC39ED291B7225A#) 

.000AFA2A490D9858F73A18F5DB301F86D#) 

.000765B6E4540674F84B762862BAFF98F#) ); 

~ SCALE is a primitive function that returns a value scaled by a 
~ specified power of two. The following implementation of 
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— SCALE is temporary, awaiting a package (possibly nonportable) 

— of primitive functions implemented in the most effective way 

— possible for a given machine. 

function SCALE ( X : LONGEST_FLOAT; M : LONGEST.INTEGER ) 

return LONGEST_FLOAT is 

FACTOR : LONGEST_FLOAT; 

POWERS : LONGEST_FLOAT := 1.0; 
MULTIPLIER : L0HGEST_FL0AT := 1.0; 

I, J : LOHGEST_INTEGER; 

begin 

if M > 0 then 
FACTOR := 2.0; 

I := M; 

else 

FACTOR := 0.5; 

I := -M; 
end if; 
POWERS := FACTOR; 
while I >= 2 loop 

J := I mod 2; 
I := I / 2; 
if J = 1 then 
MULTIPLIER := MULTIPLIER * POWERS; 

end if; 
POWERS := POWERS * POWERS; 

end loop; 
if M /= 0 then 

MULTIPLIER := MULTIPLIER * POWERS; 

end if; 
return ( MULTIPLIER*X ); 

end SCALE; 

function EXP( X : FLOAT_TYPE ) return FLOAT.TYPE is separate; 

— other functions to be added later 

end GENERIC_ELEMENTARY_FUNCTIONS; 

separate ( GENERIC_ELEMEKTARY_FUNCTIOHS ) 

function EXP( X : FLOATJTYPE ) return FLOAT_TYPE is 
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RESULT : FLOATJTYPE; 
L0G2_BY_32_LEAD, L0G2_BY_32_TRAIL, F, 

Y, Rl, R2, q, TMP : LONGEST_FLOAT; 
TW0_T0_6 : constant := 64; 
TW0_T0_8 : constant := 256; 
L0G2_BY_32 : constant := 

16#5.8B90B_FBE8E_7BCD5_E4FlD_9CC01_F97B5_7A079_A1933_94C#E-2; 
THIRTY_TW0_BY_L0G2 : constant := 

16#2E.2A8EC_A5705_FC2EE_FA1FF_B41A4_74FA2_3AD5E#; 
LARGE_THRESHOLD : LOHGEST_FLOAT := 

2.0 * LONGEST_FLOAT(FLOAT_TYPE'SAFE_EMAX) * 6.931471806E-1; 
SMALL_THRESHOLD : L0NGEST_FL0AT := 

FLOATJTYPE'BASE'EPSILOH; 

I, M, H_l, H_2, M, J : LONGEST.INTEGER; 

begin 

— Step 1. Filter out exceptional cases. 

Y := L0NGEST_FL0AT( X ); 
if abs(Y) >= LARGEJTHRESHOLD then 

raise ARGUMENT_ERROR; 
elsif abs(Y) <= SMALL JTHRESHOLD then 

return( FLOATJTYPE( 1.0 + Y ) ); 
end if; 

Step 2. Reduce the argument. 

To perform argument reduction, we find the integer H such that 
X = H * log2/32 + remainder, |remainderI <= log2/64. 

I is defined by round-to-nearest-integer( X*32/log2 ) and 
remainder by X - H*log2/32. The calculation of H is 
straightforward whereas the computation of X - H*log2/32 
must be carried out carefully. 
log2/32 is so represented in two pieces that 
(1) log2/32 is known to extra precision, (2) the product 
of H and the leading piece is a model number and is hence 
calculated without error, and (3) the subtraction of the value 
obtained in (2) from X is a model number and is hence again obtained 
without error. 

The following case analysis chooses the appropriate 
representation of log2/32, depending on the number of 
digits in L0NGEST_FL0AT. 

\ 
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case SYSTEM.MAX_DIGITS is 

when 6     => 

L0G2_BY_32_LEAD  := 16#5.8B8#E-2; —12 bits 

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B8#E-2; 

when 7.-8  => 

L0G2_BY_32_LEAD  := 16#5.8B9#E-2; —15 bits 

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B9#E-2; 

when 9..11 => 

L0G2_BY_32_LEAD  := 16#5.8B908#E-2; —17 bits 
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B908#E-2; 

when 12..14 => 

L0G2_BY_32_LEAD  := 16#5.8B90A#E-2; —22 bits 
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90A#E-2; 

when 15..19 => 

L0G2_BY_32_LEAD  := 16#5.8B90B_F8#E-2;       —28 bits 
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_F8#E-2; 

when 20..27 => 

L0G2_BY_32_LEAD  := 16#5.8B90B_FBE8#E-2;     —37 bits 

L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_FBE8#E-2; 

when 28..33 => 

L0G2_BY_32_LEAD  := 16#5.8B90B_FBE8E_7A#E-2;  —50 bits 
L0G2_BY_32_TRAIL := L0G2_BY_32 - 16#5.8B90B_FBE8E_7A#E-2; 

when others => 

raise PR0GRAM_ERR0R;  — assumption (1) is violated. 

end case; 

— Perform argument reduction in L0NGEST_FL0AT. 

H := LONGEST_IHTEGER( Y * THIRTY_TW0_BY_L0G2 ); 

if abs(K) >= TW0_T0_8 then 
H_2 := M mod TW0_T0_6; 
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H_i := H - H_2; 
else 

H_2 := 0; 
M_l := H; 

end if; 
TMP := L0NGEST_FL0AT( I_l ) * L0G2_BY_32_LEAD; 
if abs( Y ) >= abs( TMP ) then 

Rl := Y - TMP; 
else 

TMP := 0.5 * TMP; 
Ri := (Y - TMP) - TMP; 

end if; 
if H_2 /= 0 then 

Rl := Rl - L0HGEST_FL0AT(N_2) * L0G2_BY_32_LEAD; 
end if; 
R2 := -L0HGEST_FL0AT(N) * L0G2_BY_32_TRAIL; 
J := H mod 32; 
M := (H - J)/32; 

- 
— Step 3. Approximation. 

— The following is the core approximation. We approximate 
— exp(Rl+R2)-l by a polynomial. The case analysis finds both 
— a suitable floating-point type (less expensive to use than 
— L0HGEST_FL0AT) and an appropriate polynomial approximation 
— that will deliver a result accurate enough with respect to 
— FLOATJTYPE'BASE'DIGITS. Note that the upper bounds of the 
— cases below (6, 15, 16, 18, 27, and 33) are attributes 
— of predefined floating types of common systems. 

case FLOATJTYPE'BASE'DIGITS is 

when 1..6 => 

declare 
type W0RKIHG_FL0AT is digits 6; 
R, POLY : W0RKING_FL0AT; 

begin 
R := W0RKING_FL0AT( Rl + R2 ); 
POLY := R*R*( 5.00004_0481E-01 + R * i.66667_6443E-01 ); 
Q := Rl + ( R2 + L0NGEST_FL0AT( POLY ) ); 

end; 

when 7.. 15 => 

declare 
type W0RKING_FL0AT is digits 

(15+SYSTEM.MAX_DIGITS - abs(15-SYSTEM.MAX_DIGITS))/2; 
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~ this is min( 15, SYSTEM.MAX_DIGITS ) 

R, POLY : WORKING.FLOAT; 

begin 
R := WORKING_FLOAT( Ri + R2 ); 
POLY := R*R*( 5.00000_00000_00000_08883E-01 + 

R*( i.66666_66666_52608_78863E-01 + 
R*( 4.16666_66666_22607_95726E-02 + 

R*( 8.33336_79843_42196_16221E-03 + 

R*( 1.38889_49086_37771_99667E-03 ))))); 

Q := Rl + ( R2 + LOHGEST_FLOAT( POLY ) ); 

end; 

when 16 => 

declare 
type WORKING_FLOAT is digits 

(16+SYSTEM.MAX_DIGITS - abs(16-SYSTEM.MAX_DIGITS))/2; 

R, POLY : WORKING_FLOAT; 

begin 
R := WORKING_FLOAT( Rl + R2 ); 
POLY := R*R*( 5.00000_00000_00000_08883E-01 + 

R*( 1.66666_66666_52608_78863E-01 + 

R*( 4.16666_66666_22607_95726E-02 + 
R*( 8.33336_79843_42196_16221E-03 + 
R*( 1.38889_49086_37771_99667E-03 ))))); 

Q := Rl + ( R2 + LONGEST_FLOAT( POLY ) ); 

end; 

when 17..18 => 

declare 
type WORKING_FLOAT is digits 

(18+SYSTEM.MAX_DIGITS - abs(18-SYSTEM.MAX_DIGITS))/2; 

R, POLY : WORKIHG_FLOAT; 

begin 
R := WORKING_FLOAT( Rl + R2 ); 
POLY := R*R*( 5.00000_00000_00000_07339E-01 + 

R*( 1.66666_66666_66666_69177E-01 + 

R*( 4.16666_66666_28680_32559E-02 + 
R*( 8.33333_33332_52083_91118E-03 + 

R*( 1.38889_44766_51246_30293E-03 + 
R*( 1.98413_53190_32208_33704E-04 )))))); 

Q := Rl + ( R2 + LONGEST_FLOAT( POLY ) ); 

end; 

when 19..27 => 

declare 
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POLY R*R*( 
R*( 
R*( 
R*( 
R*( 
R*( 
R*( 
R*( 

q := Rl + ( R 
end; 

type WORKIHG_FLOAT is digits 

(27+SYSTEM.MAX_DIGITS - abs(27-SYSTEM.MAX_DIGITS))/2; 
R, POLY : WORKING_FLOAT; 

begin 

R := WORKIHG_FLOAT( Rl + R2 ); 

4.99999_99999_99999_99999_99636_21075E-0i + 

1.66666_66666_66666_66666_66512_04136E-01 + 

4.16666_66666_66666_69681_E9325_03184E-02 + 

8.33333_33333_33333_40906_33326_46233E-03 + 
1.38888_88888_81124_92492_26093_01620E-03 + 

1.98412_69841_13983_54303_S9568_15543E-04 + 
2.48016_66086_20855_39725_92760_S6125E-05 + 
2.75574_13983_51388_82843 29291 74995E-06 

)))))))); 
2 + LOHGEST_FLOAT( POLY ) ); 

«hen 28..33 => 

declare 

type WORKIHG_FLOAT is digits 

(33+SYSTEM.MAX_DIGITS - abs(33-SYSTEM.MAX_DIGITS))/2; 
R, POLY : WORKIHG_FLOAT; 

begin 

R := VORKIHG_FLOAT( Rl + R2 ); 
POLY := R*R*( 5.0E-01 + 

R*( i.66666_66666_66666_66666_66666_66668_18891E-01 + 
R*( 4.16666_66666_66666_66666_66666_66671_98062E-02 + 
R*( 8.33333_33333_33333_33333_33182_72433_96473E-03 + 
R*( 1.38888_88888_88888_88888_88860_77788_96115E-03 + 
R*( 1.98412_69841_26984_13216_98830_39302_820E-04 + 
R*( 2.48015_87301_58730_16549_32617_44006_810E-05 + 
R*( 2.7B573_19223_90497_50521_23337_44713_411E-06 + 

R*( 2.7S573_19223_90383_09381_24531_22474_208E-07 + 

R*( 2.50521_67036_89710_14700_24557_88635_351E-08 + 
R*( 2.08768_06002_87469_73970 46716 40247 S97E-09 

))))))))))); 
q := Rl + ( R2 + LONGEST_FLOAT( POLY ) ); 

end; 

when others => 

raise PR0GRAM_ERR0R;  — assumption (1) is violated, 

end case; 

— This completes the core approximation. 
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— Step 4. Function value reconstruction. 

— We now reconstruct the exponential of the input argument. 
— The order of the computation below must be strictly observed. 

F := TW0_T0_J_BY_32( J, LEAD ) + TW0_T0_J_BY_32( J, TRAIL ); 

case LONGEST_FLOAT'MACHINE_RADIX is 

when 2 => 

Y := TW0_T0_J_BY_32( J, LEAD ) + 
( TW0_T0_J_BY_32( J, TRAIL ) + F*Q ); 

RESULT := FLOAT_TYPE( SCALE( Y, M ) ); 

when 16 => 

Y := SCALE( TW0_T0_J_BY_32( J, LEAD ), M ) + 
SCALE( TW0_T0_J_BY_32( J, TRAIL ) + F*q, M ); 

RESULT := FLOAT_TYPE( Y ); 

when others => 

raise PROGRAM_ERROR;  — assumption (1) is violated, 

end case; 

if RESULT /= 0.0 then 
return( RESULT ); 

else 
raise ARGUMENT_ERR0R; 

end if; 

exception 

when NUMERIC_ERR0R I CONSTRAINT.ERROR => 

raise ARGUMENT.ERROR; 
— This handling may be changed in the future. For one 
— thing, overflowing the constraints of the base type 

— of FLOAT_TYPE and overflowing the constraints of 
— FL0AT_TYPE are indistinguishable in the way exception 

— is handled now. 

end EXP; 
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